
code.sd

November 2023 – April 2024

http://code.sd/

Migration to Go language

Introduction

Go is compiled, statically typed, concurrent, imperative, with OOP support, high-level
programming language. Go has been developed and supported by Google, and version 1 has been
released in 2012

Author

Motaz Abdel Azeem, I have graduated at Sudan university of science and technology in 1999, and I
was developed using Delphi, then Java and now Go language. I have written many books for
programming languages: Object Pascal, Java (an Arabic book) and now Go. I’m founder of Code
for Computer software (code.sd)

Main objectives for this book

There are many reasons why I wrote this book, first I need to study again Go language in more
academic way, and cover most of language details that I didn’t used in production. Also to receive
feedback from readers and reviewers for our methodology of using Go. Also this book is written to
help spread - the good language - Go and add more learning books as our contribution to
community and as pay-back after our benefit using Go. Also this book could be a guide and
introduction for our new developers whom join Code.sd, to understand why we have choose Go
over other languages, and our standard way of using it.

Book license:

This books is licensed under Creative Commons

http://code.sd/
http://code.sd/books/

Table of Contents

Introduction...2
Author...2
Main objectives for this book..2
Book license:...2
A Brief about us and used technologies:...4
Go features and advantages...5
Go features according to Go site:..6
Drawback of Go language...6
Our success case of using Go..7
Go vs Java resources comparison...8
Threads comparison:...10
Executable size..12
Installing Go..12
First Go application...13
Cross compilation...14
IDE..15
First Go sample with LiteIDE...16
Arrays and Slices:...19
Maps..20
Passing variables by reference..21
Generics..22
Writing to text file...22
Reading text file..23
Go routines..24
Wait Group..25
Mutex..27
HTTP Web Sample..29
Web services..30
Go HTML templates...32
Go HTML Template web application...34
Static contents in Web applications...34
Deploying Web apps and Web services...34
HTTP client...35
GoCat manager...38
MySQL connection and third party packages...39
MySQL-Sample with packages..45
Unit testing in Go..47
MySQL-Sample with OOP...48
Composition..52
Anonymous field composition..55

A Brief about us and used technologies:

Code (a Software Firm) is specialized in development in networking, telecom software, APIs,
VOIP, and web applications. Previously Java and PHP were been used in development for all
systems and modules, but after 4 to 6 years, problems has arises from both languages in the long
run, these problems were:

a). Java problems:

1. Java consumes a lot of resources: CPU and Memory, specially when deploying in Tomcat
server. Programs written in Java requires much memory in servers – compared with other
technologies- for large amount of traffic. For development PCs also it consumes a lot of
memory to run NetBeans (which is written in Java), also requires powerful CPU. It runs
very slow in low resources developers PCs.

2. We encounter servers CPU load for Java web applications and web services, also crashes
happens in Tomcat which results in stopping all deployed Java web applications and
services.

3. JSP feature of Java encourages developers for bad practice: an anti-pattern of writing logic
within presentation and sometimes data access in the same file (.jsp file).

4. Java JVM version differences: There are many servers with different releases of Ubuntu
which has different versions of Java, starting from Java 7 to 11, also there are different
versions of Tomcat and MySQL, in addition to developer different environment version, this
makes incompatibility and errors when deploying with higher version and different version
in targeted machines.

5. Oracle is licensing usage of Java SE, in spite of that OpenJDK requires no licensing, but it is
not grantee that OpenJDK will be developed, improved, and comparable with new versions
of Java.

6. Java run-time in deployment side requires updates on the server for security purposes. Old
unpatched Java run-time could have vulnerabilities and expose server to intrusion

b). PHP problems

1. PHP is scripting language, so that it requires source to be deployed in server side, and in
case of in-premises deployment, source code will be exposed in client customers and
couldn’t be protected against change and copyright

2. It requires PHP interpreter to be available on servers with specific version and with required
packages

3. Upgrading developer PHP version requires upgrading servers version of PHP and all
running applications on that server

4. Some developers are modifying code directly in clients servers, which results in different
versions of files in servers than developers PCs and source control. This makes conflicts
between main trunk version and deployed versions

5. PHP allows developers to write code and HTML in the same file, which breaks single
responsibility principle and MVC. This makes code hard to read and to modify

6. Since PHP is not compiled, PHP source code with errors could be deployed or submitted to
source control, also change could happen in deployment files that could generate syntax
errors.

7. PHP has weak types definition and does not support unit testing and debugging, so that bugs
and problems are hard to trace and to fix

8. Scripting languages are fragile in deployment environment, not like compiled and byte code
languages that produces solid binaries or byte code that is more immune against change in
deployed environments

9. PHP sites are subject to hackers intrusion, they will know that this site is built using PHP
and they could find vulnerabilities. Hackers are always targeting PHP open source packages
that are often deployed in public servers such as phpMyAdmin, and wordpress.

Go features and advantages

1. It is a compiled language, and it’s executable binary is self-contained, which means that all
packages and dependencies are linked into one single executable that is easy to deploy and
run independently of platform version in target machines.

2. It supports cross-compilation: we can produce Linux 64 bit binary from windows OS and
vice versa

3. Memory safety and garbage collection compared to similar compiled languages such as C
and C++

4. Fast execution for produced binaries

5. Uses low resources: memory and CPU

6. Has simple and readable syntax, fast to learn

7. Module support: easy to import packages and it’s dependencies

8. Has built-in networking packages, this makes it suitable for networking, Internet, and
communication applications.

9. Go-routines: an easy implementation of multi-tasking, light weight for CPU and memory
compared to threads

10. Simplicity: Go language and tools are very simple, no frameworks are required. Standard
language libraries are very rich, this reduces investment in study for the language and it’s
basic libraries and packages, also provides new developers fast track to learn and start
developing using Go.

11. No hacking target for deployment applications, because there is no platform, or libraries are
required to deploy Go applications in servers, so that it is more immune against hacking
compared to scripting and run-time based languages.

Go features according to Go site:

http://go.dev

• An open-source programming language supported by Google

• Easy to learn and great for teams

• Built-in concurrency and a robust standard library

• Large ecosystem of partners, communities, and tools

Drawback of Go language

As any programming language, each programming language has been designed to cover specific
domain of programming, so that there is no one programming language could fit all domains. Go
language is no exception, and as a newly introduced language it has it’s own problems and lacks in
some aspects.

1. It has fewer developers compared to other programming languages that already has
dominated development for decades. Our solution to this problem is to hire junior
developers and let them learn Go, and we do benefit Go simplicity and ease of learning.
Junior developers tend to accept new technologies more than seniors whom tend to resist
and keep their old technologies that they already invested their time. In addition to seniors
developers whom already face problems with other languages and has already convinced to
migrate to Go.

2. Some customers requires to use specific languages that their internal developers use, in case
of delivering software with source code, and they choose other languages that already
famous, old, and has larger developers base, such as Java. Part of customers are asking for
programming language for curiosity only. Most of customers requires delivery as black-box
product

3. Go language is developed and controlled by single company : Google, so that license could
be changed for future languages the as Oracle did for Java. Truly open source languages that
has many organizations and companies sharing it’s development is more immune against
license change in future. In other side this also could be considered as strength point, to have
one large successful company to produce such programming language and it’s tools the
same as commercial competitive products, and this company is one of largest users for Go
language in their own systems and services.

4. Module Packages download must be downloaded through Google proxy, even if you host
packages in your public server, if they close that proxy server from your country, you
couldn’t use Go with external packages

Our success case of using Go

We have started experimenting and re-writing small projects to Go language, then we have started a
migration of critical and unstable Java modules. We get an immediate result by achieving stability
with newly converted modules to Go, and one of examples is a web service for Asterisk that was
unstable Java web service running in Tomcat which always crashes under heavy load. Go version
has achieved stability and running for more than 5 years without any crash or stop. Here is the
process in Linux server, check process date, it has started since 2018:

ps -eo lstart,cmd | grep goagent
Sun Jul 1 08:35:10 2018 ./goagent

This case becomes a reference point and solid result to adopt Go language in our critical modules.

An important thing that worth mentioning on this case, is that our unreliable Java web service and
background services has been written after many years developing mostly in Java, compared to only
two months of experimenting with Go language.

Successive migrations have been done after that module re-writing, and it always results in a better,
stable and cleaner code. But note that we didn’t translate Java code as-it-is in all cases, sometimes
we have enhance internal structure for most of migrated code, to implement software engineering
principles, but even when no enhancement in code logic and structure is done; we get benefits of
performance, stability and low resources usage for all migrated projects and modules, also we could
give junior developers a Java or a PHP module to translate it to Go.

Java modules that handles a moderate traffic and didn’t require frequent modifications, are stable
and working just fine, and there is no urgent need to migrate them, specially when were written
using best practices. The main issue for such projects is that we need to have Java knowledge
among team in order to maintain these modules. Our target is to minimize tools, technologies and

programming languages, so that if we manage to migrate all or most of projects and modules to one
language and fewer technologies; we could achieve that target and support our running projects
with a smaller team.

Go vs Java resources comparison

I have made simple console application timer in both Go and Java, which runs in an infinite loop to
display current date and time in console to see how it consumes in resources:

1. GoTimer source:

package main

import (
 "fmt"
 "time"
)

func main() {
 for {
 fmt.Println(time.Now().String())
 time.Sleep(time.Second)
 }
}

2. JavaTimer source:

package javatimer;

import java.util.Date;

public class JavaTimer {
 public static void main(String[] args) throws InterruptedException {

 while (true){
 System.out.println(new Date().toString());
 Thread.sleep(1000);
 }
 }
}

Here are memory comparison when running both applications in Linux:

Note that GoTimer consume 1.9 Megabytes, while JavaTimer consumes 18.3 Megabytes:
Using ps_mem python program:

For consumed threads in OS:
using below command in Linux:

ps -o nlwp <pid>

GoTimer consumes 5 process threads while JavaTimer consumes 15 process threads:

To compare it to C, we have written below code in ctimer.c file:

#include<stdio.h>
#include<time.h>

int main() {
 struct timespec waitt = { 1/*seconds*/, 0/*nanoseconds*/};
 while (1) {
 time_t t;
 time(&t);
 printf("Time: %s", ctime(&t));
 nanosleep(&waitt,NULL);
 fflush(stdout);
 }

 return 0;
}

Memory usage of C version of timer is only 109 Kilobytes

 Private + Shared = RAM used Program

 96.0 KiB + 13.5 KiB = 109.5 KiB a.out

and it is only one process:

ps -o nlwp 44147
NLWP
 1

C is a winner here for resources consumption, but the code is less readable.

Also C is a low level programming language, and in our use case of Go and Java are higher level
programming languages that can be used for enterprise software, so that C is not a candidate in our
case.

Threads comparison:

Go has light weight threads called go routines, while Java has more heavy threads.
Here are previous Timer examples modified to have multiple threads, note that Go routine is more
simple to write:

1. GoTimer with threads: (20 lines)

package main

import (
 "fmt"
 "time"
)

func displayTime(id int) {
 for {
 fmt.Println(id, time.Now().String())
 time.Sleep(time.Second)
 }
}

func main() {
 fmt.Println("Display Time Go Routine")
 go displayTime(1)
 go displayTime(2)
 select {}
}

2. JavaTimer with threads: (32 lines)

package javatimer;

import java.util.Date;

class JavaTimerThread extends Thread{
 public int ID;

 @Override
 public void run(){
 while (true){
 System.out.println(ID + ":" + new Date().toString());
 try {
 Thread.sleep(1000);

 } catch (InterruptedException ex) {
 System.err.println("Error: " + ex.toString());
 }
 }
 }
}

public class JavaTimer {
 public static void main(String[] args) throws InterruptedException {

 JavaTimerThread timer = new JavaTimerThread();
 timer.ID = 1;
 timer.start();

 JavaTimerThread timer2 = new JavaTimerThread();
 timer2.ID = 2;
 timer2.start();
 }
}

When we run command to check process internal threads we will notice that GoTimer remains with
5 threads while Java process threads has increased to 17:

Executable size

Another important difference, but this time is on Java side: Java produces small size byte code
executable (in kilobytes), while Go compiler produces self-contained large size binary executable,
which contains run-time libraries and used packages, all of them will be inside executable that starts
with about 2 megabytes in size.
Java is heavily rely on Java virtual machine or Java runtime (JRE), so that byte-code executable are
very small and relies on shared JRE between all java applications on that machine Here are our
previous comparison projects sizes:

Java
2.5K JavaTimer.jar

Go:
1.9M GoTimer
That was the minimum compiler output size, so that we need to check real projects for multi
thousands lines:

C:
17K a.out
C binary has less statically-linked run-time size compared to Go, also C has no garbage collector.

Here is Go 6k lines that uses few packages:
12M CodeAccountingWS

Compared to Java 7k lines that uses few Java class libraries:
5.5M SMSPanel.war

This is not big issue for disk space on which we deploy executable, but it might be an issue when
transferring binary files via network/Internet, it could take a time to in case of low speed network
connections, so that it is better to compress binaries while copying.

Installing Go

For Linux, Go could be installed from repositories, but it is better to be downloaded directly from
official Go site to get the latest versions:

https://go.dev/

After downloading suitable OS version we can follow the “installation instructions” depending on
platform we are using.
This package contains Go compiler, debugger, run-time libraries, Go packages, and command line
tools that used by developer and used by IDE that we will install later

This is an example of deploying Go package in Linux:

rm -rf /usr/local/go && tar -C /usr/local -xzf go1.20.linux-amd64.tar.gz

or as multiple commands and using sudo:

https://go.dev/

sudo rm -rf /usr/local/go
sudo tar -C /usr/local -xzf go1.20.linux-amd64.tar.gz

After that we need to check Go compiler has been deployed, and in case of installing new version
we need to make sure new version is working now:

go version

Result could be something like this depending on version and target OS:

go version go1.20 linux/amd64

First Go application

After installing Go compiler, we could use any simple text editor to write first Go sample command
line project:
First we should create folder by the same project name, for example “first”, then create main.go file
inside “first” folder and write below code.
Then we can use gofmt tool to reformat text alignment to Go standards for more readability:

gofmt -w *.go

package main

import (
 "fmt"
)

func main() {

 fmt.Println("Hello Go")
}

Then run first application:

go run main.go

This produces executable binary in a temporary directory and run that binary
Output:

Hello Go

To build go binary output, we can use go build command:

go build main.go

or just go build in case of multiple project files:

go build

After running go build command we will find executable in the same directory of source project
code:

-rw-rw-r-- 1 motaz motaz 105 Feb 11 08:31 main.go
-rwxrwxr-x 1 motaz motaz 1.9M Feb 11 08:34 main

Previous sample files represents Linux environment, in Windows we will find main.exe file
We can run executable and distribute it to other machines

To run it in Linux:
./main

And in Windows
main.exe

or
main

As in native compiled languages, we will get a binary executable depending on OS and Platform,
and that executable runs only on the same targeted Platform, to check executable in Linux we could
use file command tool to check the file compiled target:

file main

The result will be something like this depending on OS:

main: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, Go
BuildID=T1xYAYiZPSUBtfa28x_N/Kko4il7vBW6OyEirX06W/9vAOZhoNUt7A7DP7tVTG/
Y_meKiaUFP4PphxQag_Q, with debug_info, not stripped

The advantage of Java here -compared to native compiled language- is that Java produced byte code
will run on every machine that has compatible version of Java virtual machine, so that only one byte
code is required to be produced, and could be run in different platforms in which JVM exists there.

Cross compilation

As Go available on all major platforms, we could compile that source in every platform the same
like C and C++, but the advantage here in Go is that there is an easy cross-compilation, which
means you can produce compiled binary for any supported platform from your development
platform, for example if you are using Linux, you can produce Linux, Windows 64/32, Mac, ARM
binaries from your Linux PC.

Here is an example of how to produce Windows 64 bit binary from Linux or any other platform:

GOOS=windows GOARCH=amd64 go build main.go

and now we will find main.exe file and if we checked it with file main.exe we will get:

file main.exe
main.exe: PE32+ executable (console) x86-64 (stripped to external PDB),
for MS Windows

Here another example to build ARM executable that could run on RaspberyPI:

env GOOS=linux GOARCH=arm GOARM=5 go build main.go

produced executable name will be main, so that your previous Linux binary will be overwritten, and
you need to use file command to differentiate between different binaries of Linux, and Unix. Mac
binary also has no extension the same like Linux:

file main
main: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked,
Go BuildID=Fk6aTEOgy7bWmOgkdLVd/KKZ5f1Qe8FS4O-NQHfYY/ce9Vr7NIvgeZAQWdT0HI/
FLMnwvzqn4tiG38gW_wB, with debug_info, not stripped

IDE

Go compiler and it’s tools are independent of any development IDEs, it could be used with many
IDEs, such as Visual Studio Code, and LiteIDE. These IDEs are using Go compiler and tools to
provide syntax check, format, compilation, run, testing, building and debugging.

1. Visual Studio Code

It is one of famous development IDE, and it uses extensions in order to provide support for variety
of programming languages.

After installing Visual Code, we can install Go extensions, or start writing Go project, then IDE will
suggest extensions to be installed.

First extension will be: Go for Visual Studio Code, then Go runner extension to manage running
and stopping Go programs.

https://code.visualstudio.com/

2. LiteIDE

LiteIDE is a specific Go IDE, so that it will be ready for Go projects, no extensions or special
configuration is required, it will be ready out of the box for Go programs. It is ideal for starting with
Go. It provides compilation, building, modules initialization, testing, and cross-compilation.

Also we can easily work in multiple projects in LiteIDE, but it lacks integration with source control,
you need to use external tools or command line to import and commit projects in source control.

In our illustration we will use LiteIDE because of previously mentioned reasons, but we will
mention command line method for running and building which is used by Visual Code.

First Go sample with LiteIDE

To create new Go project you will find multiple choices, we will choose: Go new command project
option.

This creates project in default go/src directory, if you want to create project in another directory you
could select Go new command project (Anywhere) option

We named it first-sample, then we will find below ready written source template:

// first-sample project main.go
package main

import (
 "fmt"
)

func main() {
 fmt.Println("Hello World!")
}

http://liteide.org/

If we try to run it using build and run button (BR) or Control+R, we will get below message:

go: go.mod file not found in current directory or any parent directory; see 'go
help modules'
Error: process exited with code 1.

LiteIDE enforces to use Go module in spite of that this simple project does not require external
package, but we could initialize module for future use of external packages.

Module could be initialized using (M) button menu, then select Go module Init.

For Visual code we don’t have to initialize module unless we need an external package, and in this
case we could initialize module using below command line in project directory:

go mod init

go.mod file will be created containing below text:

module first-sample
go 1.20

Then we can run again the project and see the result, also an executable will be produced after
building project, either first-sample filename in Linux, Unix, and Mac environment or first-
sample.exe in Windows environment

We can add another line to main.go source file to display current date and time by typing:

fmt.Println(time.

Then LiteIDE will suggests to add time package automatically, and code will be:

// first-sample project main.go
package main

import (
 "fmt"
 "time"
)

func main() {
 fmt.Println("Hello World!")
 fmt.Println(time.Now().String())
}

this requires build and run again to get below result:

Hello World!
2023-02-28 08:41:40.236956669 +0200 CAT m=+0.000123066
Success: process exited with code 0.

In below command, we can do temporary build for this program and run it:

go run .

This command will not provide executable in current directory, and if we need to produce
executable without running the application we can use below command:

go build

then we can run produced binary using:

./first-sample

in Linux, Unix, and Mac

or first.sample in Windows

first-sample

We can right-click project in LiteIDE then select Open terminal here

We can assign current time to a variable then use that variable for different purposes such as to
display time or to store date and time in a log file, using one of below variable declarations:

1. Using explicit declaration using var keyword:

 var atime time.Time
 atime = time.Now()
 fmt.Println(atime.String())

2. Second method is to declare variable by direct assign of value using (:=) operator:

 atime := time.Now()
 fmt.Println(atime.String())

In this example we will use explicit declaration of atime type, then assign value in the same line:

 var atime time.Time = time.Now()
 fmt.Println(atime.String())

This could also be for any other types, such as integers and strings:

 var area int = 1200
 diameter := 1.2
 unit := "Kilometers"
 fmt.Printf("Area is %d %s\n", area, unit)
 fmt.Printf("Diameter is %f %s\n", diameter, unit)

Note that explicit declaration of variable type makes it more readable to define to readers the type
of variable instead of searching function returned value type or guessing assigned value type. IDE
also could help showing function returned value by moving mouse pointer to function name as in

Visual Code, or pressing Control key and pointing by mouse as in LiteIDE, but sometimes we need
to review code using browser when accessing source control, so that explicit delegation will help in
this case.

Note that there is no semicolon (;) at the end of lines or statements, which eliminates ; expected
compiler errors, such as in other programming languages, but it could be used for multi-statement
lines such as:

 diameter := 1.2; unit := "Kilometers"

If we click save on LiteIDE or used gofmt, they will convert it to two lines and removes ;

Arrays and Slices:

Arrays in Go has fixed length of specific type, here is example of array of string:

 var list [3]string
 list[0] = "First"
 list[1] = "Second"
 list[2] = "Third"
 fmt.Println(list)

Output:

[First Second Third]

It could be iterated using for .. range statement:

 for i, item := range list {
 fmt.Println(i, item)
 }

Output:

0 First
1 Second
2 Third

First variable of for .. range (i) will hold index of current iterated item of array while second
variable (item) will hold current iterated array element. We can omit index if we need only item by
using underscore:

for _, item := range list {

Slices are dynamic, it requires initialization either with zero-length then append it later with items,
or initialized with initial size and also it could be appended later:

 var list []string

 list = make([]string, 3)
 list[0] = "First"
 list[1] = "Second"
 list[2] = "Third"
 list = append(list, "Fourth")
 fmt.Println(list)

output:

[First Second Third Fourth]

Maps

Maps in Go is an implementation of hash table, which stores data in a key-value pair, as in below
example:

func main() {
 personMap := make(map[string]string)
 personMap["name"] = "Motaz"
 personMap["address"] = "Khartoum,Sudan"
 personMap["title"] = "Developer"
 personMap["dob"] = "1975-11-16"
 fmt.Println("Name = ", personMap["name"])
 fmt.Println(personMap)
 delete(personMap, "dob")
 fmt.Println(personMap)
}

output:

Name = Motaz
map[address:Khartoum,Sudan dob:1975-11-16 name:Motaz title:Developer]
map[address:Khartoum,Sudan name:Motaz title:Developer]

Here we have initialized map of string that their keys are string also, and we could use other types
such as map[string]int, that their values are integer and keys as string, or map[int]string: values are
string and keys as integer.

We can iterate through map using for .. range statement as in below sample:

 for key, value := range personMap {
 fmt.Println(key, "=", value)
 }

output:

name = Motaz
address = Khartoum,Sudan
title = Developer
dob = 1975-11-16

Passing variables by reference

When calling a function we could call it using constant parameters such as:

 displaySum(2, 5)

or passing parameters using variable by copy:

 a:= 5
 b:= 6
 displaySum(a, b)

Third option is to pass parameter by reference, in which we need to let function to be able to change
variable value, for example swap function:

In this case we have to define parameters as pointers:

func swapNumbers(a *int, b *int) {

 *a, *b = *b, *a
 return
}

When calling that function we have to pass address instead of values (&a, &b):

 swapNumbers(&a, &b)

Here is another example using string type: a function to change spaces to underscore in names:

func toUnderscore(name *string) {

 *name = strings.ReplaceAll(*name, " ", "_")
 return
}

*name = means the contents of pointer (name)

We can call it by passing variable address (&x):

 name := "go language"
 toUnderscore(&name)
 fmt.Println(name)

We can make a general swap function using interface{} type or it’s new alias type (any) :

func swap(a, b *any) {
 *a, *b = *b, *a
 return
}

We can call it as:

 var a, b any
 a = "a"
 b = "b"
 swap(&a, &b)

 fmt.Println(a, b)

Generics

Generics has been added to Go in version 1.18, instead of using dynamic empty interface{} or it’s
any alias type that is checking type at run-time and could generate panic error which could close
application, a new method has been introduced, in this method compiler could check types at
compile time and prevents errors. Here is an example of add function that could be used to add
integers, float or concatenate strings:

func add[T int | float64 | string](a T, b T) (result T) {
 return a + b
}

This generic add function could be called as in below example:

 fmt.Println(add(2, 3))
 fmt.Println(add(1.2, 2.1))
 fmt.Println(add("Hello", " World"))

Using this generic method is more safer and faster than interface{}, the compiler will generate
multiple instances of add function for each type. This represents static and strong typing discipline
in Go language

Writing to text file

Here is an example of how to write string in text file, if file does not exist; writeToFile function will
create it, and if file already exists it will append to it:

package main

import (
 "fmt"
 "os"
 "time"
)

func main() {
 fmt.Println("Writing to text file")
 writeToFile("text.txt", "Time in server is: "+time.Now().String())
}

func writeToFile(filename string, text string) (err error) {

 var file *os.File
 file, err = os.OpenFile(filename,

 os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
 if err == nil {
 defer file.Close()
 file.WriteString(text + "\n")
 }

 return
}

We have used point to type os.File in “os” package, so that we have added it to import section.

In writeToFile function we have called os.OpenFile with create and append options, if
opening/creating file has succeeded and err is nil, it will write text to file, but note that we have
used defer keyword statement in front of closing file (f.Close()). Defer do two things: 1: delays
execution of given statement to end of current block or function, and 2: ensures execution of that
statement in all cases, such as error or panic, except if explicit Exit command is called.

File mode parameter that contains 0644 is a Unix permission type giving full read-write permission
to owner, and read-only for groups and others.

Reading text file

In this example we have written two ways to read from text file: first method (readLinesFromFile)
is to read line by line, and second method (readEntireFile) that reads all contents at once :

package main

import (
 "bufio"
 "fmt"
 "io/ioutil"
 "os"
)

func main() {
 filename := "main.go"
 fmt.Println("Reading from text file: ", filename)
 //readLinesFromFile(filename)
 readEntireFile(filename)
}

func readLinesFromFile(filename string) (err error) {

 var file *os.File
 file, err = os.OpenFile(filename, os.O_RDONLY, 0644)
 if err == nil {
 defer file.Close()
 scanner := bufio.NewScanner(file)
 for scanner.Scan() {
 line := scanner.Text()
 fmt.Println(line)
 }
 } else {
 fmt.Println("Error: ", err.Error())
 }
 return
}

func readEntireFile(filename string) (err error) {

 var file *os.File
 file, err = os.OpenFile(filename, os.O_RDONLY, 0644)
 if err == nil {

 defer file.Close()
 var contents []byte
 contents, err = ioutil.ReadAll(file)
 if err != nil {
 fmt.Println("Error reding file : ", err.Error())
 }
 fmt.Print(string(contents))
 } else {
 fmt.Println("Error: ", err.Error())
 }
 return
}

I think the code is clear and needs no more clarifications, it reads all file contents in an array of
byte, then we could typecast if to string to show it in console.

We can read filename from command line arguments by modifying main function to:

func main() {

 if len(os.Args) != 2 {
 fmt.Println("Usage:")
 fmt.Println("readtextfile <filename>")

 } else {
 filename := os.Args[1]
 fmt.Println("Reading from text file: ", filename)
 //readLinesFromFile(filename)
 readEntireFile(filename)
 }
}

Note that first argument (os.Args[0]) is program executable name itself with it’s path

We could call it from command line in Linux and Max as:

./readtextfile main.go

And in Windows:

readtextfile main.go

Go routines

Go routines is a way of implementing parallel running for code and using multi-core CPU. Go
routine is lighter than Java thread, here is sample using of Go routines:

package main

import (
 "fmt"
 "time"
)

func main() {

 go displayTime("1")
 go displayTime("2")
 go displayTime("3")
 for {
 }
}

func displayTime(id string) {

 for i := 0; i < 3; i++ {
 fmt.Printf("Routine : %s time in server is: %s\n", id,
 time.Now().String()[:19])
 time.Sleep(time.Second)
 }
}

Output:

Routine : 1 time in server is: 2023-04-11 08:27:34
Routine : 2 time in server is: 2023-04-11 08:27:34
Routine : 3 time in server is: 2023-04-11 08:27:34
Routine : 1 time in server is: 2023-04-11 08:27:35
Routine : 2 time in server is: 2023-04-11 08:27:35
Routine : 3 time in server is: 2023-04-11 08:27:35
Routine : 3 time in server is: 2023-04-11 08:27:36
Routine : 1 time in server is: 2023-04-11 08:27:36
Routine : 2 time in server is: 2023-04-11 08:27:36

We have only added go keyword to run displayTime function in background as that simple.

Three routines will run simultaneously

Infinite for loop is important to keep main program wait that execution, otherwise application will
exit before executing any routine. We could also add timer instead of infinite loop, because using
infinite loop will not exist unless it has been closed using Ctrl-C or ending it from tasks or processes
manager

 go displayTime("1")
 go displayTime("2")
 go displayTime("3")
 time.Sleep(time.Second * 3)

Wait Group

If we have Go routines or multiple Go routines that we want to run in parallel and waiting their
results before proceed to next statements, we can use WaitGroup in sync package.

We have modified previous go routine sample that has three times for loop to use WaitGroup
instead of infinite for loop at end of program:

package main

import (
 "fmt"
 "sync"
 "time"
)

func main() {
 var wg sync.WaitGroup
 wg.Add(3)
 go displayTime(&wg, "1")
 go displayTime(&wg, "2")
 go displayTime(&wg, "3")
 wg.Wait()
 fmt.Println("All routines has finished")
}

func displayTime(wg *sync.WaitGroup, id string) {

 for i := 0; i < 3; i++ {
 fmt.Printf("Routine : %s time in server is: %s\n", id,

 time.Now().String()[:19])
 time.Sleep(time.Second)
 }
 wg.Done()
}

In this sample program we have declared wg variable as sync.WaitGroup type, and have initialized
it for three routines using Add method (wg.Add(3)) and we will wait until all these three routines to
finish. We have passed wg variable by reference (&wg) to displayTime function to call Done()
method of wait group.

At main function after calling go routines we have called wg.Wait() to wait all routines to finish
before proceed with next statements of program, and we could get result back for another process,
such as fetching data from web in parallel then do process for that data

Output:

Routine : 3 time in server is: 2023-04-11 09:13:20
Routine : 1 time in server is: 2023-04-11 09:13:20
Routine : 2 time in server is: 2023-04-11 09:13:20
Routine : 2 time in server is: 2023-04-11 09:13:21
Routine : 1 time in server is: 2023-04-11 09:13:21
Routine : 3 time in server is: 2023-04-11 09:13:21
Routine : 2 time in server is: 2023-04-11 09:13:22
Routine : 3 time in server is: 2023-04-11 09:13:22
Routine : 1 time in server is: 2023-04-11 09:13:22
All routines has finished

Note that it is better to call Done() at the top of function with defer keyword to ensure calling it at
any cases, and not let Wait() wait forever in case of crash inside function before reaching Done()
method:

func displayTime(wg *sync.WaitGroup, id string) {

 defer wg.Done()
 for i := 0; i < 3; i++ {
 fmt.Printf("Routine : %s time in server is: %s\n", id,
 time.Now().String()[:19])
 time.Sleep(time.Second)
 }
}

Mutex

One of important thing in Go routines and threads is shared resources access, for example if we
look back to our write to text file sample and tried to write on that file using multiple go routines, a
race condition will occur, which means trying to access resource exclusively, in this case to write on
file, such race condition could corrupt file or crashes the program. To prevent race condition, we
have to synchronize writing to that file, by enabling only one thread/go routine to write to that file
and lock the resource while writing, then release that lock after finish writing, while enforce other
routines to wait first routine until finish.

Mutex (Mutual Exclusion) in Go enables lock and unlock for any resource, here write to file sample
program rewritten using go routines and mutex :

package main

import (
 "fmt"
 "os"
 "sync"
 "time"
)

var mutex *sync.Mutex
var counter int = 0

func main() {

 mutex = &sync.Mutex{}
 fmt.Println("Writing to text file")
 for i := 0; i < 10; i++ {
 go writeToFile("text.txt",
 fmt.Sprintf("routine # %d: Time in server is: %s",
 i+1, time.Now().String()))
 }
 time.Sleep(time.Second * 5)
 mutex.Lock()
 defer mutex.Unlock()
 fmt.Println("Written counter: ", counter)
}

func writeToFile(filename string, text string) (err error) {
 mutex.Lock()
 defer mutex.Unlock()
 counter++
 var file *os.File
 file, err = os.OpenFile(filename, os.O_APPEND|os.O_CREATE|
 os.O_WRONLY, 0644)

 if err == nil {
 defer file.Close()
 file.WriteString(text + "\n")
 }
 return
}

Now we have two shared resources: external text file, and counter global variable, which they
should be accessed in synchronized method for go routines.

We have defined mutex as pointer of type sync.Mutex globally in program and initialized it at main
function

We used Lock() method of mutex before access shared resource, and release lock using Unlock()
method after writing/reading from that resource:

 mutex.Lock()
 fmt.Println("Written counter: ", counter)
 mutex.Unlock()

We can test our programs against race condition using below command line:

go run -race main.go

or

go build --race main.go

then run it as main executable normally

In our case we will get normal execution and result:

Writing to text file
Written counter: 10

If we commented out mutex.Lock() and mutext.Unlock() in writeToFile method

 //mutex.Lock()
 //defer mutex.Unlock()

and build the application then run go run -race main.go again, we will get race condition:

==================
WARNING: DATA RACE
Read at 0x0000005f8780 by main goroutine:
 main.main()
 /home/motaz/………/samples/textfiles/main.go:24 +0x266

Previous write at 0x0000005f8780 by goroutine 15:
 main.writeToFile()
 /home/motaz/………/samples/textfiles/main.go:31 +0x84
 main.main.func1()
 /home/motaz/………/samples/textfiles/main.go:19 +0x53

Goroutine 15 (finished) created at:
 main.main()
 /home/motaz/……/samples/textfiles/main.go:19 +0xe4
==================

Written counter: 10
Found 3 data race(s)
exit status 66

Race condition happens on below lines:

 counter++

and

 fmt.Println("Written counter: ", counter)

Note that race condition isn’t detected in writing to text file, only on global variable (counter)
writing and reading while others are writing. This might mean that writing to a file in Go is thread-
safe, but it is not guaranteed in all cases and all platforms, we are here to demonstrate the need and
mechanism of using Mutex

HTTP Web Sample

Go supports HTTP web applications (backend) easily in standard networking packages. HTTP
application could be either web application or web service, here is our sample application for web
app:

We have created a new project as command line project with name first-web, then we have
initialized module in LiteIDE.

When using Visual Code or other editor we will not need to initialize module, because we are using
only standard packages in this sample:

// first-web project main.go
package main

import (
 "fmt"
 "net/http"
 "time"
)

func main() {
 http.HandleFunc("/", index)
 fmt.Println("Listening on \nhttp://localhost:9090")
 err := http.ListenAndServe(":9090", nil)
 if err != nil {
 fmt.Println("Error while listening to port 9090: " + err.Error())
 }
}

func index(w http.ResponseWriter, r *http.Request) {

 w.Header().Set("content-type", "text/html")
 fmt.Fprintf(w, "<h2>Go Web Page</h2>")
 fmt.Fprintf(w, "Main index page")
 fmt.Fprintf(w, "
Today is %s", time.Now().String())
}

Main important function here is http.ListenAndServe(":9090", nil), which will work as an
embedded HTTP web server, listening on port (9090 in this example), and this lets program holds
and keep working, and makes it a multi-threaded application server listening and serving all
requests on that port.

If port is used by other process, or no permission to use (ports under 1024 requires admin
permission), ListenAndServe will exit and returns error in err object and our command application
will closes in this case.

Second important method is the handler: index() method that we have written to receive HTTP
client requests (such as browser request through URL, curl or any HTTP client)

We have linked HTTP path request of (/) to index() handler using HandleFunc method:

 http.HandleFunc("/", index)

We could add another path handler such as /hello after writing hello() method handler and link it
using HandleFunc:

 http.HandleFunc("/hello", hello)

func hello(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("content-type", "text/html")
 fmt.Fprintf(w, "<h2>Hello Go</h2>")
}

This is a simple method for writing web pages in Go, but in real development we use templates that
we will talk about it later.

Web services

Web service is using the same HTTP package and similar to web page in Go, except it has no user
interface and is not targeting browsers, so that there is no HTML here, instead; it targets calling
from other applications, but it is still can be called for - testing purposes - from browsers, command
line tools, and browser web services plugins.

Here is a simple web service that returns server’s date and time in JSON format:

// first-service project main.go
package main

import (
 "encoding/json"
 "fmt"
 "net/http"
 "time"
)

func main() {

 http.HandleFunc("/time", gettime)
 fmt.Println("Listening on \nhttp://localhost:9090")
 err := http.ListenAndServe(":9090", nil)
 if err != nil {
 fmt.Println("Error while listening to port 9090: " + err.Error())
 }
}

type TimeResponseType struct {
 Time string
}

func gettime(w http.ResponseWriter, r *http.Request) {

 w.Header().Set("content-type", "application/json")
 var atime TimeResponseType
 atime.Time = time.Now().String()
 res, _ := json.Marshal(atime)
 w.Write(res)
}

Note that the first difference here is content-type type, which is application/json in web services
instead of text/html in web pages. Also we have used struct type to return JSON response object:

type TimeResponseType struct {
 Time string
}

We call the web service using below request URL:

http://localhost:9090/time

We will get below JSON response:

{"Time":"2023-03-10 09:32:39.072559162 +0200 CAT m=+4.697942371"}

We can add any other type as fields on this struct object (TimeResponseType), but we have to
capitalize first letter of field names to make it public, if we write first letter of struct field name in
small letter it will be private and will not be displayed in JSON response.

If we want to display it in JSON format as lower-case or in another name we can add JSON
formatted as below:

type TimeResponseType struct {
 Time string `json:"time"`
}

Another example :

 Time string `json:"server-time"`

This will make field naming in JSON independent of Go field naming

http://localhost:9090/time

Go HTML templates

Go has templates processors, which enables web developers to isolate HTML design from Go code
to achieve single responsibility principle and MVC in web development.

Not like PHP and JSP which allows developers to write code inside presentation (HTML) files, Go
language has a simple HTML tags notation that could be used inside HTML to do presentation
functions, such as displaying variables, iterating through slice to fill a table, and limited if
conditions. This notation is a bridge between Go code which represents controller and presentation
HTML pages. This notation is called Go template language.

We have created for templates sample a new project called (webpage) and created new sub-folder
inside project folder called (templates) in which we can put HTML pages, and we have created new
file called index.html with below contents:

<html>
<head>
<title>Go Template</title>
<body>
 <h3>Go HTML Template web application</h3>
 <p>
 Time in server is: {{.Time}}

 Your IP address is: {{.IP}}
 </p>
</body>
</html>

Note that {{.Time}} and {{.IP}} tags will be replaced later by values passed from Go code.

Here main.go file:

package main

import (
 "fmt"
 "html/template"
 "net/http"
 "strings"
 "time"
)

var mytemplate *template.Template

func main() {
 mytemplate = template.Must(template.ParseGlob("templates/*"))
 fmt.Println("http://localhost:9090")
 http.HandleFunc("/", index)
 err := http.ListenAndServe(":9090", nil)
 if err != nil {
 fmt.Println("Error while listening to port 9090")
 }
}

type TemplateData struct {
 IP string
 Time string

}

func index(w http.ResponseWriter, r *http.Request) {
 var data TemplateData
 data.IP = r.RemoteAddr
 if strings.Contains(data.IP, ":") {
 data.IP = data.IP[:strings.Index(data.IP, ":")]
 }
 data.Time = time.Now().String()[:19]
 mytemplate.Execute(w, data)
}

We have defined mytemplate global variable as point to template.Template type, then initialized it to
load all HTML files in (templates) directory:

 mytemplate = template.Must(template.ParseGlob("templates/*"))

We have used our own struct type (TemplateData) to encapsulate all our required variables and data
to be displayed in HTML page

Then we called it inside index handler to display HTML contents and passing required
variables/tags to it:

 mytemplate.Execute(w, data)

r.RemoteAddr returns client IP address with port number such as: 27.0.0.1:43060 and we want to
remove the port using strings package:

 data.IP = r.RemoteAddr
 if strings.Contains(data.IP, ":") {
 data.IP = data.IP[:strings.Index(data.IP, ":")]
 }

We can copy part of string using [:] for instance: copy first two characters:

 name := "Ahmed"
 name = name[:2]

 and last two characters as:

 name = name[len(name)-2:]

and two letters from the middle as:

 name = name[2:4]

here is the output page in browser:

http://localhost:9090/

Go HTML Template web application

Time in server is: 2023-04-10 07:26:24
Your IP address is: 127.0.0.1

Static contents in Web applications

We can add front-end static contents to Go web application such as: images, css, and java script in
directories and make that directory accessible to clients, from our HTTP web server using below as
in our below sample.

Below sample is part of GoCat project (which is similar to Tomcat), this web application is used for
Go web applications and Web services to deploy and mange that applications, complete source exist
in this repository:

https://github.com/motaz/gocat

In main.go file before calling http.Listen..

 fs := SetCacheHeader(http.FileServer(http.Dir("static")))
 http.Handle("/gocat/static/", http.StripPrefix("/gocat/static/", fs))

We have a directory called static contains css sub-folder and
images sub-folder:

We can access static contents from HTML template as in
below HTML header tags:

<link rel="shortcut icon" href="/gocat/static/images/golang.png" />
<link href="/gocat/static/css/style.css" rel="stylesheet" type="text/css">

Deploying Web apps and Web services

In production it is not practical to have many Go web applications and web services with different
ports and enable/open that ports in Firewall. Support that we have 3 apps in the same server
listening on ports 9090, 9091, and 9092, and more apps could be added later that requires opening
new ports if deployment server is behind a firewall, instead we could use web server such as
Apache or Nginx to host our applications. Nginx is more easy and ready to work as reverse proxy,
here is sample of entry in sites-enabled/default file for one of our Go web apps or web services
listening on port 9090:

location /timer/ {
proxy_pass http://localhost:9090/;

}

We can access it using default port 80 for HTTP or port 443 for HTTPS depending on which section
we have defined our reverse proxy entry, we can access it from browser using below URL:

http://localhost/timer

We have to use relative path in our web applications, or we can define a constant path prefix such
as:

 http.HandleFunc("/goweb", index)
 http.HandleFunc("/goweb/time", timer)
 http.HandleFunc("/goweb/login", login)
 http.HandleFunc("/goweb/logout", logout)
 http.HandleFunc("/goweb/users", users)
 err := http.ListenAndServe(":9090", nil)

In this case we could define our reverse proxy in Nginx as:

location /goweb/ {
proxy_pass http://localhost:9090/goweb/;

}

We can access it in browser or any client side as:

http://localhost/goweb

http://server-ip/goweb

Nginx could also be used as load balancer, we could host Go web applications and web services in
multiple machines and configure load balancer and configure reverse proxy for them

HTTP client

We can write HTTP client using http package that we have already used in our previous web service
sample and web app examples, also it can be used to call that web service.

In this sample we will call IP location web service http://ip2c.org giving it public IP address to
return country code and name that given IP belongs to:

// http-client project main.go
package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
)

func main() {
 ip := "41.209.90.89"
 result := callHTTP("https://ip2c.org/" + ip)
 fmt.Println(result)
}

http://ip2c.org/
http://server-ip/goweb
http://localhost/goweb
http://localhost/timer

func callHTTP(url string) (result string) {

 resp, err := http.Get(url)
 if err != nil {
 fmt.Println("Error: ", err.Error())
 } else {
 body, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 fmt.Println("Error in reading result: ", err.Error())
 } else {
 resp.Body.Close()
 }
 result = string(body)
 }
 return
}

Note that we have write new function (callHTTP) that accepts URL, sends HTTP Get request, then
returns response in result parameter.

This is the sample result of running above example:

1;SD;SDN;Sudan

We can add more features to callHTTP function, to include timeout, request content-type, to return
content-type, and HTTP status. Here is modified code:

package main

import (
 "fmt"
 "io/ioutil"
 "net/http"
 "time"
)

func main() {
 ip := "41.209.90.89"
 status, result := callHTTP("https://ip2c.org/" + ip)
 fmt.Println("Response:")

 fmt.Println(status)
 fmt.Println(result)
}

func callHTTP(url string) (status, result string) {

 timeout := time.Duration(10 * time.Second)
 client := http.Client{
 Timeout: timeout,
 }
 req, _ := http.NewRequest("GET", url, nil)
 req.Header.Set("Content-Type", "text/plain")
 resp, err := client.Do(req)
 if err != nil {
 fmt.Println("Error: ", err.Error())
 } else {
 status = resp.Status

 fmt.Println("Header Items")
 for key, item := range resp.Header {
 fmt.Println(key, ": ", item[0])
 }

 body, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 fmt.Println("Error in reading result: ", err.Error())
 } else {
 resp.Body.Close()
 }
 result = string(body)
 }
 return
}

Here is execution result:

Header Items
Content-Type : text/html; charset=UTF-8
Access-Control-Allow-Origin : *
Server : nginx
Date : Tue, 04 Apr 2023 04:31:18 GMT
Response:
200 OK
1;SD;SDN;Sudan (the)

We have set timeout of calling that web service to 10 seconds, then we have set Content-Type
header value to text/plain, but this is used with POST method to indicate content type that been sent
to web app/service.

Note that our function now is returning two values, and this is a remarkable features in Go
language; is to return multiple values in functions. We can ignore any of returning values using
underscore character (_), for example:

 _, result := callHTTP("https://ip2c.org/" + ip)

We couldn’t assign value to a variable without using it in Go, so we have to ignore returning values
that we will not use when calling functions.

Response header is define as map of string :

type Header map[string][]string

and their values are array of string:

We do iteration in the map using for .. range statement:

 for key, item := range resp.Header {
 fmt.Println(key, ": ", item[0])
 }

GoCat manager

We have developed GoCat manager which is similar to Java’s Apache Tomcat, which allows
deployment and managing Go web services and web apps, but the difference is that GoCat is not a
web container and not a web server, we still need Nginx as we have described previously to access
Go web services using standard HTTP port 80 or HTTPS port 443, and to manage load balancing.

GoCat helps to upload, update and monitor Go services and web apps easily.

For GoCat download please visit below page:

https://github.com/motaz/GoCat

MySQL connection and third party packages

In this sample we will connect to MySQL database, and this requires an import of additional
package which is not part of standard Go libraries and packages, so that we need to initialize Go
module in this sample project to let the additional package be installed from Internet.

Note that this project will be found in sample projects in this book page, with name: mysql-sample

We have used two additional packages in this project:

1. github.com/go-sql-driver/mysql

which is mysql connection library for Go

2. github.com/motaz/codeutils

codeutils is a package that contains functions to read from configuration file (.ini) and to write into
log file

we put them in module, and this is source of go.mod file after initializing Go module using LiteIDE
Module menu button:

Go module Init

or using command line:

go mod init

We will get below text in go.mod file:

module mysql-sample

go 1.20

After that we can import that packages from their location using below command, in LiteIDE we
can click on Module menu button then select

Go module Tidy

or using command line when using other IDEs:

go mod tidy

Required packages will be imported from net and go.mod file will be updated to:

module mysql-sample

go 1.20

require (
 github.com/go-sql-driver/mysql v1.7.1
 github.com/motaz/codeutils v1.0.20
)

Imported packages will be cached locally in Go package folders (GoPath/pkg/mod) according to
their version.

Version is an important tag of Go package, if you write application and depend on specific version
of any package, other developers whom need to compile or modify your source will get the exact
version of required package when run go mod tidy command, this ensures that your application
behavior will not change if new version of package has been released.

Here are mysql-sample project folder files:

We have divided code into three Go source files to implement single responsibility principle:

1. main.go which contains start of project code. Code here is very few because main
responsibility of main.go code is to start project and it show be minimum to possible for
easy understanding of project.

2. dataaccess.go: this source file contains mysql database access function, like connection,
reading from tables, and updating data.

3. controller.go: instead of calling database access functions directly from main.go file, it is
better to have middleware layer (business layer/controller layer) to have logical and abstract
functions, for example if we use Login method, in this layer we could check username
validity, and do hashing for password and make sure that this user is not restricted, then call
lower level functions in access layer such as getUserInfo. Actual authentication and
authorization logic will happen in controller layer not in data access layer, also external
authentication could be used here by calling remote web service or LDAP server, or in
another access layer file but not in MySQL access layer file.

Other files are:

1. go.mod: the file that contains required packages and project name. This file is important for
project and should be included in source control

module mysql-sample
go 1.20
require (
 github.com/go-sql-driver/mysql v1.7.1
 github.com/motaz/codeutils v1.0.20
)

2. go.sum: automatically generated file after using tidy tool, this file contains information
about locally cached versions of required packages. If cache already exists, then no need to
import from remote repository. This file shouldn’t be included in source control, because it
will be generated automatically after caching packages in each developer machine.

github.com/go-sql-driver/mysql v1.7.1 h1:lUIinVbN1DY0xBg0eMOzmmtGoHwWBbvnWubQUrtU8EI=
github.com/go-sql-driver/mysql v1.7.1/go.mod h1:OXbVy3sEdcQ2Doequ6Z5BW6fXNQTmx+9S1MCJN5yJMI=
github.com/motaz/codeutils v1.0.20 h1:fQ6wdkGwUQwsqOyoGocreF9leDHhQzNlPRPtMNV3LL4=
github.com/motaz/codeutils v1.0.20/go.mod h1:3Nwz4asoggDXCVd0Z+5Wf4BPKa2lXZt3tjniSlILN40=

As a hacking method if there is no Internet while creating new project, this file (go.sum) could be
copied manually to new project folder in case of using the same packages, but packages should be
already importer before for previous projects, and tidy will not be required because it requires
Internet access to download from remote repository

3. config.ini: this is a configuration file and it is not part of source. We used
codeutils.GetConfigValue function to read user name and password of database instead of
fixing them inside code, to allow portability when deploying in different MySQL server.
This file shouldn’t be included in source control, each developer should have different local
file to represents local MySQL configuration.

This is a sample of configuration data inside config.ini

dbuser=mysqluser
dbpassword=mysecretpass

4. dbscript.sql: this contains database schema which is used by this project and it is part of
project source and should be included in source control, note that it is not part of Go project,
but it is required to create database before running application.

CREATE TABLE `sample`.`users` (
 `id` INT NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(45) NULL,
 PRIMARY KEY (`id`));

Last file mysql-sample - which is not part of project source code and shouldn’t be included in
source control - the output of complication which is binary executable for Unix like systems, and
in Windows it will be mysql-sample.exe

Back to Go source files, we will start with lower level files, which means are close to OS, resources,
Databases and far from user interface.

1. dataaccess.go:

package main

import (
 "database/sql"
 "fmt"
 "strings"
 _ "github.com/go-sql-driver/mysql"
 "github.com/motaz/codeutils"
)

func GetConfigurationParameter(param, defaultValue string) string {

 value := codeutils.GetConfigValue("config.ini", param)
 if value == "" {
 value = defaultValue
 }
 return value
}

func WriteLog(event string) {

 codeutils.WriteToLog(event, "log")
}

func SQLConnection() (db *sql.DB, err error) {

 var databaseServer, databaseUser, database, password string
 databaseServer = GetConfigurationParameter("dbserver", "localhost")
 databaseUser = GetConfigurationParameter("dbuser", "")
 database = GetConfigurationParameter("database", "sample")
 password = GetConfigurationParameter("dbpassword", "")
 connectionString := fmt.Sprintf("%v:%v@tcp(%s:3306)/%v?parseTime=true",
 databaseUser, password, databaseServer, database)
 db, err = sql.Open("mysql", connectionString)
 if err != nil {
 WriteLog("Error in SQLConnection: " + err.Error())
 }
 return
}

type UserType struct {
 ID int
 Username string
}

func ListUsers(db *sql.DB) (users []UserType, err error) {

 sqlStatement := `select id, username from users order by id`
 rows, err := db.Query(sqlStatement)
 users = make([]UserType, 0)
 if err == nil {
 defer rows.Close()
 for rows.Next() {
 var user UserType
 err = rows.Scan(&user.ID, &user.Username)
 if err == nil {
 users = append(users, user)
 }
 }
 } else {
 WriteLog("Error in ListUsers: " + err.Error())

 }
 return
}

func InsertUser(db *sql.DB, username string) (success bool, err error) {

 sqlStatement := `INSERT INTO users (username) values (?)`
 username = strings.TrimSpace(username)
 _, err = db.Exec(sqlStatement, username)
 success = err == nil
 if !success {
 WriteLog("Error in InsertUser: " + err.Error())
 }
 return
}

At the top of dataaccess.go file, we have two functions: GetConfigurationParameter and WriteLog,
these are functions wrappers for similar functions in codeutils package GetConfigValue and
WriteToLog. First one reads configuration value from ini file (config.ini) and second one writes
event log, such as error message in log file. Calling function wrapper is more easy, convenient,
more customized and specific for current project, also we could introduce new features that not
exist in original functions of package, such as default value in GetConfigurationParameter
function.

There are three database functions:

a. SQLConnection: This connects to MySQL server using parameters in config.ini file, and
returns a pointer to database connection object (db *sql.DB)

b. ListUsers: This method retrieves all users information as a list (slice), and it retrieves
them from users table.

c. InsertUser: This method inserts new user into users table.

2. controller.go : This Go source file is a higher level than data access layer, it calls dataaceess.go
functions and it could add business logic and provides new functions with that business logic for
higher level layer (presentation layer), which is in our case main.go.

Here is controller.go code:

package main

import (
 "bufio"
 "database/sql"
 "errors"
 "fmt"
 "os"
 "strings"
)

func readAndInsertUser(db *sql.DB) (err error) {

 fmt.Print("Please enter username: ")
 var username string
 in := bufio.NewReader(os.Stdin)
 username, err = in.ReadString('\n')
 if err == nil && strings.TrimSpace(username) == ""
 err = errors.New("Empty username")
 }
 if err == nil {
 _, err = InsertUser(db, username)
 }
 if err == nil {
 fmt.Println("User: ", username, " Has been added")
 } else {
 fmt.Println("Error in getAndInsertUser: " + err.Error())
 }
 return
}

func showUsers(db *sql.DB) (err error) {

 list, err := ListUsers(db)
 if err == nil {
 for _, user := range list {
 fmt.Printf("User #%d: %s\n", user.ID, user.Username)
 }
 } else {
 fmt.Println("Error in showUsers: " + err.Error())
 }
 return
}

func InsertAndShowUsers() {

 db, err := SQLConnection()
 if err == nil {
 defer db.Close()
 getAndInsertUser(db)
 showUsers(db)
 }
}

This file contains three functions:

a. readAndInsertUser: This function asks user to enter a name and inserts it to database by
calling InsertUser method in dataaccess.go file.

b. showUsers: This function calls ListUsers function in dataaccess.go layer, and retrieves
users list to displays users in console.

Note that above both function names starts with lower case(read,, show,) that means they are
private functions and couldn’t be accessed outside current package (main), only Go source
files that belongs to main package could access these private functions, but in our current
example all files belongs to the same package (main), and we will change this in next
example.

c. InsertAndShowUsers: This function is public, since it is started with capital letter
(Insert..) and it could be accessed outside package, and we need higher level layer to access
only this method which represents interface of this file (controller.go), that means higher
level shouldn’t access other methods directly, but since higher level file belongs to the same
package, we couldn’t prevent such access.

3. main.go: This is the starter file in Go because it contains main function, and it represents
presentation layer in console application. It simply calls InsertAndShowUsers in controller.go.

This is the source of main.go file:

// mysql-sample project main.go
package main

func main() {
 InsertAndShowUsers()
}

Note that it contains simple code, no much detailed code is there, no business logic and no data
access code here. This represents single responsibility and to make project easier to be studied.

MySQL-Sample with packages

Here is the same previous example divided into packages with the same project. Packages are sub-
directories inside project, and we have changed the main package name to new packages that has
the same name is parent directory, for example inside access directory we renamed package name
for all files in that directory to access.

Here are the new hierarchy of application, we have introduced two new directories: access, and
control, which means two additional packages in addition to standard package name (main):

Below is new application directory contents (mysql-sample-package) which will be found with
sample projects with this book:

There are slight changes happens from previous project:

1. dataaccess.go source file package name has been renamed to access according to the parent sub-
directory of this source file, also has been moved to access sub-directory:

package access

import (
 "database/sql"
 "fmt"
 "strings"
 _ "github.com/go-sql-driver/mysql"
 "github.com/motaz/codeutils"
)

Remaining of source of dataaccess.go is the same.

Note that we could have another access files in the same directory with package name (access).
These files could access their private variables and functions in access package as well as public
functions.

2. controller.go: There are three changes happen in controller.go file, in addition to moving it to
control folder

package control

import (
 "bufio"
 "database/sql"
 "errors"
 "fmt"
 "mysql-sample-package/access"
 "os"
 "strings"
)

func readAndInsertUser(db *sql.DB) (err error) {

 fmt.Print("Please enter username: ")
 var username string
 in := bufio.NewReader(os.Stdin)
 username, err = in.ReadString('\n')
 if err == nil && strings.TrimSpace(username) == "" {
 err = errors.New("Empty username")
 }
 if err == nil {
 _, err = access.InsertUser(db, username)
 }
...

First: package has been renamed to control

Second: below line has been added to import section to be able to access access package:

 "mysql-sample-package/access"

Third change is that we need to add (access.) prefix before accessing any function in access layer.
In LiteIDE we could start writing (access.) And wait for import suggestion, then press enter for
adding that package in import section.

3. main.go: in main file we have done two changes: adding below package name of controller to
import:

"mysql-sample-package/control"

Then we have added (control.) Prefix before calling any function inside controller.go file, here is
the complete source of main.go:

// mysql-sample-package project main.go
package main

import (
 "mysql-sample-package/control"
)

func main() {
 control.InsertAndShowUsers()
}

Allocating Go files into sub-folder packages is good for large and medium applications for more
modularity and to achieve information hiding principle through hiding detailed functions and
variables and expose only interfaces that should only be accessed outside their packages such as
functions.

Unit testing in Go

Unit testing is important in big projects, specially when working with multiple packages, we need to
make sure every function inside package is working properly, and we don’t want to wait until higher
level functions has written and call that function.

To write unit testing file, we can write it inside package sub-directory and name it with the same
package name and suffix it with _test.go, for example for access package, testing package name
will be access_test.go, and we should write a test function start with Test prefix in access_test.go
file, and we can write multiple test functions, example:

access_test.go:

package access

import (
 "fmt"
 "testing"
)

func TestUsersList(t *testing.T) {

 db, err := SQLConnection()
 if err == nil {
 list, err := ListUsers(db)

 if err == nil {
 for _, item := range list {
 fmt.Printf("%+v\n", item)
 }
 } else {
 fmt.Println(err.Error())
 }
 } else {
 fmt.Println(err.Error())
 }
}

func Test2(t *testing.T) {
 fmt.Println("Test2")
}

To run this test file we have to press Ctrl+T in LiteIDE, or click on Test button, - our cursor have to
be in any file in access directory- or using command line inside access directory

go test

here is output sample:

.../samples/mysql-sample-package/access$ go test
{ID:1 Username:Motaz}
{ID:2 Username:Khalid}
{ID:3 Username:ahmed}
{ID:4 Username:Mohamed Khalid}
{ID:5 Username:Test}
{ID:6 Username:Mohamed}
{ID:7 Username:Ali}
{ID:8 Username:SUhaib}
Test2
PASS
ok mysql-sample-package/access 0.005s

MySQL-Sample with OOP

Go is not an OOP language, but it does support most of OOP features. Our previous projects were
normal structured programs that rely on functions without OOP.

We can implement OOP in Go language using struct type, we have modified dataaccess.go source
file that part of access package. We have added struct type called DAO (Data Access Object), this
type contains a private field called (connection) which holds MySQL connection pointer, we don’t
want other packages to access this field

dataaccess.go:

type DAO struct {
 connection *sql.DB
}

This is the main part of OOP which represents class definition, all members (methods) will be
linked with this struct.

Initialization or instantiation (as in OOP, to create instance of that class), it requires constructor
function outside class, because we couldn’t access members of object that not initialized yet.

Here is constructor function:

func InitDAO() (dao *DAO, err error) {
 dao = new(DAO)
 dao.connection, err = sqlConnection()
 return
}

We have initialized an instance of DAO type using new keyword to allocate memory space and
return it’s pointer, then we have initialized MySQL connection and have returned MySQL
connection in dao.connection private field

We have modified ListUsers function to become part of DAO class as:

func (dao *DAO) ListUsers() (users []UserType, err error)

This passes variable (dao) when calling ListUsers in controller like this:

dao.ListUsers()

Also there is another two methods: InsertUser and Close to close MySQL connection

Here is complete ListUsers method:

func (dao *DAO) ListUsers() (users []UserType, err error) {

 sqlStatement := `select id, username from users order by id`
 rows, err := dao.connection.Query(sqlStatement)
 users = make([]UserType, 0)
 if err == nil {
 defer rows.Close()
 for rows.Next() {
 var user UserType
 err = rows.Scan(&user.ID, &user.Username)
 if err == nil {
 users = append(users, user)
 }
 }
 } else {
 WriteLog("Error in ListUsers: " + err.Error())
 }
 return
}

Change here is accessing MySQL connection pointer inside dao object:

dao.connection.Query(..

Here is complete dataaccess.go which contains DAO definition, initialization and it’s methods :

package access

import (
 "database/sql"

 "fmt"
 "strings"
 _ "github.com/go-sql-driver/mysql"
 "github.com/motaz/codeutils"
)

type DAO struct {
 connection *sql.DB
}

func InitDAO() (dao *DAO, err error) {

 dao = new(DAO)
 dao.connection, err = sqlConnection()
 return
}

func GetConfigurationParameter(param, defaultValue string) string {

 value := codeutils.GetConfigValue("config.ini", param)
 if value == "" {
 value = defaultValue
 }
 return value
}

func WriteLog(event string) {
 codeutils.WriteToLog(event, "log")
}

func sqlConnection() (db *sql.DB, err error) {

 var databaseServer, databaseUser, database, password string
 databaseServer = GetConfigurationParameter("dbserver", "localhost")
 databaseUser = GetConfigurationParameter("dbuser", "")
 database = GetConfigurationParameter("database", "sample")
 password = GetConfigurationParameter("dbpassword", "")
 connectionString := fmt.Sprintf("%v:%v@tcp(%s:3306)/%v?parseTime=true",
 databaseUser, password, databaseServer, database)
 db, err = sql.Open("mysql", connectionString)
 if err != nil {
 WriteLog("Error in SQLConnection: " + err.Error())
 }
 return
}

type UserType struct {
 ID int
 Username string
}

func (dao *DAO) ListUsers() (users []UserType, err error) {

 sqlStatement := `select id, username from users order by id`
 rows, err := dao.connection.Query(sqlStatement)
 users = make([]UserType, 0)
 if err == nil {
 defer rows.Close()
 for rows.Next() {
 var user UserType
 err = rows.Scan(&user.ID, &user.Username)

 if err == nil {
 users = append(users, user)
 }
 }
 } else {
 WriteLog("Error in ListUsers: " + err.Error())
 }
 return
}

func (dao *DAO) InsertUser(username string) (success bool, err error) {

 sqlStatement := `INSERT INTO users (username) values (?)`
 username = strings.TrimSpace(username)
 _, err = dao.connection.Exec(sqlStatement, username)
 success = err == nil
 if !success {
 WriteLog("Error in InsertUser: " + err.Error())
 }
 return
}

func (dao *DAO) Close() {
 dao.connection.Close()
}

In controller.go we have modified initialized dao object and add dao. prefix when calling functions
in access package that already part of DAO class :

func InsertAndShowUsers() {

 dao, err := access.InitDAO()
 if err == nil {
 defer dao.Close()
 readAndInsertUser(dao)
 showUsers(dao)
 } else {
 fmt.Println("Error in InsertAndShowUsers: " + err.Error())
 }
}

We have initialized dao object and then pass it as method receiver to be used to call InsertUser,
ListUsers and Close.

Here is showUsers private function in controller when calling ListUsers in dataaccess:

func showUsers(dao *access.DAO) (err error) {

 list, err := dao.ListUsers()
 if err == nil {
 for _, user := range list {
 fmt.Printf("User #%d: %s\n", user.ID, user.Username)
 }
 } else {
 fmt.Println("Error in showUsers: " + err.Error())

 }
 return
}

Composition

Go has composition feature instead of inheritance, composition is loosely coupling for classes
compared to inheritance that is making tightly coupling of sub-classes with super-classes. Loosely
coupling is a good practice and important principles in software engineering.

We have modified last project and renamed it mysql-sample-
comp to implement this feature. We have added log table to log
events and errors for the program. Instead of having one
dataacess.go file we have abstracted basic class to implement
database connection. New file name is basicdb.go which
contains DAO struct type.

This new source file contains InitDAO, sqlConnection, and
Close functions/methods.

Here are new code of basicdb.go file:

type DAO struct {
 connection *sql.DB
}

func InitDAO() (dao *DAO, err error) {
 dao = new(DAO)
 dao.connection, err = sqlConnection()
 return
}

func (dao *DAO) Close() {
 dao.connection.Close()
}

Other user table functions has been moved to userdb.go file, which contains UserDB struct/class
type, this new class contains Dao field of type DAO class, which implements composition to reuse
DAO functions:

userdb.go:

type UserDB struct {
 Dao *DAO
}

Also it contains InitUserdb function to initialize new object as well as Dao object:

func InitUserdb() (userObj *UserDB, err error) {
 userObj = new(UserDB)
 userObj.Dao, err = InitDAO()
 return
}

Also ListUsers, and InsertUser methods has been moved in this file.

This file of access package is logdb.go file which contains LogDB class and new functions and
methods:

InitLogdb to initialize instance of LogDB type:

logdb.go:

func InitLogdb() (logObj *LogDB, err error) {
 logObj = new(LogDB)
 logObj.Dao, err = InitDAO()
 return
}

Also it contains new methods: ListLastLog, and InsertLog.

Other modifications has done in main.go file and controller.go to use Log:

main.go file:

package main

import (
 "fmt"
 "mysql-sample-comp/access"
 "mysql-sample-comp/control"
 "runtime"
)

func main() {
 logObj, err := access.InitLogdb()
 if err == nil {
 defer logObj.Dao.Close()
 control.LogAction(logObj, "start", "Program started on: "+
 runtime.GOOS+"."+runtime.GOARCH)
 control.InsertAndShowUsers(logObj)
 control.ShowLog(logObj)
 } else {
 fmt.Println("Unable to initialize log: ", err.Error())
 }
}

Note that we could access method inside composed object such as Close() method in DAO:

logObj.Dao.Close()

Also we could do multiple composition for different struct types inside new class struct.

Here are new functions in controller.go file to access log methods:

func LogAction(logObj *access.LogDB, action, details string) {

 logObj.InsertLog(action, details)
}

func ShowLog(logObj *access.LogDB) {

 fmt.Println("------------")
 fmt.Println("Last log:")
 logRecords, err := logObj.ListLastLog(10)
 if err == nil {
 for _, log := range logRecords {
 fmt.Printf("#%d: %s: %s: %s\n", log.ID,

 log.ActionTime, log.Action, log.Details)
 }
 } else {
 fmt.Println("Error in ShowLog: " + err.Error())
 }
}

Anonymous field composition

 , We could define struct in sub-struct without field name for example we have changed LogDB
 :struct definition from

type LogDB struct {
 Dao *DAO
}

:To

type LogDB struct {
 DAO
}

 We have removed instance name (Dao) so that we could access and inherit DAO fields and

 methods directly from LogDB , instance but in this case we could not use initialize for DAO

(InitDAO ,) because it requires object reference for DAO instead we have initialized connection field

 ofDAO :from sub-struct LogDB

func InitLogdb() (logObj *LogDB, err error) {

 logObj = new(LogDB)
 logObj.connection, err = sqlConnection()
 return
}

 :Instead of accessing connection through Dao instance

logObj.Dao.connection.Query(..

 :We could access it directly

logObj.connection.Query(..

 :Also we could accessmethods directly

logObj.Close()

 , In addition to not been able to use initialize function of base class we could face naming conflicts
 , between base and sub-class we have to , avoid similar field andmethod names also in multiple

 .composition we could have the same issue
 Defining struct field name is more convenient andmore readable than anonymous field for

 , :accessing specific base class properties so that it is better to returned it to

type LogDB struct {
 Dao *DAO
}

: .http //code sd/books

	Introduction
	Author
	Main objectives for this book
	Book license:
	Table of Contents
	A Brief about us and used technologies:
	Go features and advantages
	Go features according to Go site:
	Drawback of Go language
	Our success case of using Go
	Go vs Java resources comparison
	Threads comparison:
	Executable size
	Installing Go
	First Go application
	Cross compilation
	IDE
	First Go sample with LiteIDE
	Arrays and Slices:
	Maps
	Passing variables by reference
	Generics
	Writing to text file
	Reading text file
	Go routines
	Wait Group
	Mutex
	HTTP Web Sample
	Web services
	Go HTML templates
	Go HTML Template web application
	Static contents in Web applications
	Deploying Web apps and Web services
	HTTP client
	GoCat manager
	MySQL connection and third party packages
	MySQL-Sample with packages
	Unit testing in Go
	MySQL-Sample with OOP
	Composition
	Anonymous field composition

